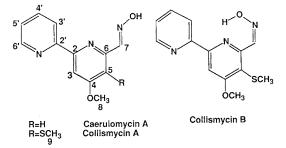
Communication to the Editor

COLLISMYCINS A AND B, NOVEL NON-STEROIDAL INHIBITORS OF DEXAMETHASONE-GLUCOCORTICOID RECEPTOR BINDING

Sir:


Glucocorticoids are very important anti-inflammatory agents in clinical use¹), but some side effects such as pituitary-adrenal suppression and fluid and electrolyte disturbances are known²). In the screening course for new non-steroidal glucocorticoide-like anti-inflammatory agents using the dexamethasone-glucocorticoid receptor binding assay³), we have found novel compounds named collismycin A and B from a culture of *Streptomyces* sp. MQ22, which was isolated from a soil sample collected at Nirasaki-shi, Nagano prefecture, Japan. In this communication, we report on the fermentation, isolation, structure elucidation and biological activities of collismycins A and B.

The fermentation was carried out in 500-ml Erlenmeyer flasks containing 100 ml of medium with following composition: potato starch 3.0%, soya flake 1.5%, yeast extract 0.2%, corn steap liquir 0.5%, NaCl 0.3%, CaCO₃ 0.3%, MgSO₄ · 7H₂O 0.05%, CoCl₂ · 6H₂O 0.0005%. The pH of the medium was adjusted to 7.1 before sterilization. The culture was carried out at 27°C for 5 days on a rotary shaker.

Collismycins A (1) and B (2) were isolated according to the scheme as shown in Fig. 2, and showed the physico-chemical properties as summarized in Table 1.

The molecular formula of 1 was determined to be $C_{13}H_{13}N_3O_2S$ by HRFAB-MS data. Since the UV and IR absorption spectra of 1 are very similar to those of caerulomycin A $(3)^{4\sim 6}$ which was isolated

Fig. 1. Total structures of collismycins A and B.

as an antimicrobial agent, it is suggested that 1 has the 2,2'-dipyridyl moiety.

The ¹H and ¹³C NMR spectra of **1** showed close similarity to those of **3** (Table 2). While the sp^2 methine signal at 5 in **3** was disappeared, a singlet methyl signal (9-H, δ_H 2.39, C-9, δ_C 18.5) was observed in **1**. In the HMBC experiment on **1**, the long range coupling from the methyl signal (9-H) was observed only to the C-5 (δ_C 122.1) (Fig. 3). Taking into consideration the presence of one sulfur atom in the molecular formula of **1** and the chemical shifts of 9-H, C-5 and C-9, SCH₃ group was confirmed to be located at C-5 position. From these findings, the structure of **1** was deduced as shown in Fig. 1.

The molecular formula of 2 was determined to be

Fig. 2. Isolation scheme of collismycins A and B.

Mycelium cake (7 liters)

extracted with 70% acetone (2 liters) concentrated to small volume to remove acetone extracted with EtOAc (1 liter x 2)
EtOAc layer (2 liters)
concentrated in vacuo
Silica gel column (150ml)
eluted with CHCl ₃ -MeOH (15:1)
Active fractions
concentrated in vacuo
Preparative HPLC
YMC pack D-ODS-7, MeOH-H ₂ O (70:30) 6.5ml/minute, UV 254nm
Collismycin A (150mg) Collismycin B (20mg)

Table 1. Physico-chemical properties of collismycins A and B.

	Collismycin A	Collismycin B
Appearance	Colorless powder	Colorless powder
MP (°C, dec)	170~172	148~150
Molecular formula	$C_{13}H_{13}N_3O_2S$	$C_{13}H_{13}N_3O_2S$
HRFAB-MS		
Calcd:	276.0807	276.0807
Found:	276.0796	276.0798
UV $\lambda_{max}(\varepsilon)$	243 (26,400)	245 (20,800)
IR v (KBr)	3155, 1568, 1540,	2937, 1587, 1578,
cm ⁻¹	1367, 1344, 1215,	1544, 1471, 1375,
	995, 794	1064, 962, 904,
		792

	1		2		3	
Position	$\delta_{\rm c}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	δ_{H}
2	157.4 s		154.8 s		156.9 s	
3	103.7 d	8.05 (s)	104.9 d	8.12 (s)	106.5 d	7.91
4	167.4 s		168.2 s		166.6 s	
5	122.1 s		121.0 s		105.5 d	7.35
6	152.6 s		152.5 s		153.4 s	
7	147.6 d	9.10 (s)	140.2 d	8.67 (s)	148.8 d	8.22
8	56.4 q	4.12 (s)	56.7 q	4.18 (s)	55.5 q	3.96
9	18.5 q	2.39 (s)	18.4 s	2.41 (s)		
NOH		10.19 (br s)		16.70 (s)		11.72
2′	155.2 s	<i>、 ,</i>	153.1 s		154.6 s	
3'	121.9 d	8.55 (d 8.0)	121.0 d	8.10 (d 8.2, 1.0, 1.0)	120.7 d	8.40
4'	137.2 d	7.88 (ddd 8.0, 7.5, 1.2)	137.5 d	7.85 (ddd 8.4, 8.2, 1.8)	137.2 d	7.98
5'	124.3 d	7.34 (dd 7.5, 5.0)	124.9 d	7.38 (dd 8.4, 5.0, 1.0)	124.4 d	7.51
6'	148.9 d	8.67 (dd 5.0, 1.2)	149.5 d	8.68 (dd 5.0, 1.8, 1.0)	149.2 d	8.72

Table 2. ¹³C NMR and ¹H NMR spectral data of collismycins A (1)^a, B (2)^a and caerulomycin A (3)^b.

^a Taken in CDCl₃.

^b Taken in DMSO- d_6 .

Fig. 3. ¹H-¹³C long range couplings and NOE.

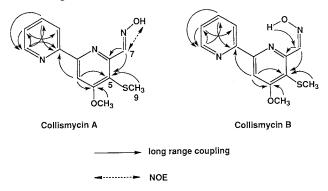


Table 3. Antimicrobial activities of collismycins A (1) and B (2).

	Medium ^a	Diameter of inhibition zone (mm)		
		1	2	
Staphylococcus aureus FDA 209P JC-1	I	14	9.5	
Bacillus subtilis ATCC 6633	I	13.5	0	
E. coli NIHJ-JC-2	Ι	(22)	0	
Candida albicans Yu1200	II	17	12	
Saccharomyces cerevisiae ATCC 9763	II	14	0	
Aspergillus niger ATCC 9642	п	23	17	

Number in parenthesis indicates a faint inhibition zone.

Plate diffusion assay. $50 \,\mu g$ was applied onto 8 mm filter disk. The disks were placed on plates seeded with the tested microorganisms in the top of the agar.

^a I: Nutrient agar (Difco), II: SABOURAUD dextrose agar (Difco).

the same as that of 1 by the HRFAB-MS data. Comparison of ¹³C NMR signals of 2 with those of 1 (Table 2) revealed an upfield shift for C-7 (δ_C 140.2 vs. $\delta_{\rm C}$ 147.6), indicating that they were geometrical isomers of the oxime function (1 for *anti* and **2** for *syn*). This was confirmed because Nuclear

Overhauser effect (NOE) was observed between 7-H and NOH with 1, but not with 2 (Fig. 3). And thus, the structure of 2 was determined (Fig. 1).

Tested so far, 1 and 2 were not interchangeable in any organic solvents at room temperature. By heating in *ortho*-dichlorobenzene at 120° C under algon atmosphere, 1 was gradually changed to 2.

The assay of dexamethasone-glucocorticoid receptor binding was examined using rat river cytosol as described previously³). 1 and 2 inhibited dexamethasone-glucocorticoid receptor binding in a dose dependent manner, with IC₅₀ values of 1.5×10^{-5} M and 1.0×10^{-5} M, respectively. Further biological studies were in progress, and will be reported in the future.

Recently, 1 was reported as antimicrobial and antitumor agent by GOMI *et al.*⁷⁾. Therefore, these activities of 1 and 2 were tested. The results of antimicrobial activities were summarized in Table 3. 1 and 2 showed cytotoxicity against L1210 murine leukemia cells (IC₅₀ 0.08 μ g/ml and 0.12 μ g/ml, respectively).

Kazutoshi Shindo Yuji Yamagishi Yukiko Okada Hiroyuki Kawai

Phamaceutical Research Laboratory, Kirin Brewery Co., Ltd., Takasaki, Gunma 370-12, Japan (Received May 19, 1994)

References

- HINCH, P. S.; C. H. SLOCUMB, A. R. BARNES, H. L. SMITH, H. L. POLLEY & E. C. KENDALL: The effects of adrenal cortical hormone 17-hydroxy-11-dehydrocorticosterone (compound E) on the acute phase of rheumatic fever. Mayo Clin. Proc. 24: 277, 1949
- GILMAN, G. A.; L. S. DOODMAN, T. W. RALL & F. MURAD: GOODMAN and GILMAN'S The Pharmacological Basis of Therapeutics. 7th Ed., pp. 1459~ 1489, Macmillan Publishing Company, a Division of Macmillan, Inc., 1985
- BAXTER J. D.; D. V. SANTI & G. G. ROUSSEAU: A filer technique for measurement of steroid-receptor binding. Methods Enzymol. 36: 234~239, 1975
- FUNK, A. & P. V. DIVEKAR: Caerulomycin, a new antibiotic from *Streptomyces caeruleus* Baldacci. I. Production, isolation, assay and biological properties. Can. J. Microbiol. 5 : 317~321, 1959
- 5) DIVEKAR, P. V.; G. READ & L. C. VINING: Caerulomycin, a new antibiotic from *Streptomyces caeruleus* Balacci. II. Structure. Can. J. Chem. 45: 1215~1223, 1967
- 6) MCINNES, A. G.; D. G. SMITH, J. L. C. WRIGHT & L. C. VINING: Caerulomycins B and C, new 2,2'dipyridyl derivatives from Streptomyces caeruleus. Can. J. Chem. 55: 4159~4165, 1977
- GOMI, S.; S. ITO, K. AZITO, Y. KARIYA & M. KOYAMA (Meiji Seika Kaisya, Ltd.): A new microbial and antitumor agent SF2738. Jpn. KoKai 78322 ('93), Mar. 30, 1993